Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model

Identifieur interne : 00C544 ( Main/Exploration ); précédent : 00C543; suivant : 00C545

Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model

Auteurs : Roderick C. Dewar ; Belinda E. Medlyn [Royaume-Uni] ; Ross. E. Mcmurtrie [Australie]

Source :

RBID : ISTEX:A6BE32A8DE84F912FE7F77BD23989A68006BD8EE

Descripteurs français

English descriptors

Abstract

Based on short‐term experiments, many plant growth models – including those used in global change research – assume that an increase in temperature stimulates plant respiration (R) more than photosynthesis (P), leading to an increase in the R/P ratio. Longer‐term experiments, however, have demonstrated that R/P is relatively insensitive to growth temperature. We show that both types of temperature response may be reconciled within a simple substrate‐based model of plant acclimation to temperature, in which respiration is effectively limited by the supply of carbohydrates fixed through photosynthesis. The short‐term, positive temperature response of R/P reflects the transient dynamics of the nonstructural carbohydrate and protein pools; the insensitivity of R/P to temperature on longer time‐scales reflects the steady‐state behaviour of these pools. Thus the substrate approach may provide a basis for predicting plant respiration responses to temperature that is more robust than the current modelling paradigm based on the extrapolation of results from short‐term experiments. The present model predicts that the acclimated R/P depends mainly on the internal allocation of carbohydrates to protein synthesis, a better understanding of which is therefore required to underpin the wider use of a constant R/P as an alternative modelling paradigm in global change research.

Url:
DOI: 10.1046/j.1365-2486.1999.00253.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model</title>
<author>
<name sortKey="Dewar, Roderick C" sort="Dewar, Roderick C" uniqKey="Dewar R" first="Roderick C." last="Dewar">Roderick C. Dewar</name>
</author>
<author>
<name sortKey="Medlyn, Belinda E" sort="Medlyn, Belinda E" uniqKey="Medlyn B" first="Belinda E." last="Medlyn">Belinda E. Medlyn</name>
</author>
<author>
<name sortKey="Mcmurtrie, Ross E" sort="Mcmurtrie, Ross E" uniqKey="Mcmurtrie R" first="Ross. E." last="Mcmurtrie">Ross. E. Mcmurtrie</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A6BE32A8DE84F912FE7F77BD23989A68006BD8EE</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1046/j.1365-2486.1999.00253.x</idno>
<idno type="url">https://api.istex.fr/document/A6BE32A8DE84F912FE7F77BD23989A68006BD8EE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F73</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F73</idno>
<idno type="wicri:Area/Istex/Curation">001F73</idno>
<idno type="wicri:Area/Istex/Checkpoint">002207</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002207</idno>
<idno type="wicri:doubleKey">1354-1013:1999:Dewar R:acclimation:of:the</idno>
<idno type="wicri:Area/Main/Merge">00D517</idno>
<idno type="wicri:Area/Main/Curation">00C544</idno>
<idno type="wicri:Area/Main/Exploration">00C544</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model</title>
<author>
<name sortKey="Dewar, Roderick C" sort="Dewar, Roderick C" uniqKey="Dewar R" first="Roderick C." last="Dewar">Roderick C. Dewar</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Medlyn, Belinda E" sort="Medlyn, Belinda E" uniqKey="Medlyn B" first="Belinda E." last="Medlyn">Belinda E. Medlyn</name>
<affiliation wicri:level="4">
<orgName type="university">Université d'Édimbourg</orgName>
<country>Royaume-Uni</country>
<placeName>
<settlement type="city">Édimbourg</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcmurtrie, Ross E" sort="Mcmurtrie, Ross E" uniqKey="Mcmurtrie R" first="Ross. E." last="Mcmurtrie">Ross. E. Mcmurtrie</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Science, University of New South Wales, Sydney NSW 2052</wicri:regionArea>
<wicri:noRegion>Sydney NSW 2052</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Change Biology</title>
<title level="j" type="alt">GLOBAL CHANGE BIOLOGY</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="615">615</biblScope>
<biblScope unit="page" to="622">622</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1999-06">1999-06</date>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimation</term>
<term>Alternative modelling paradigm</term>
<term>Atmospheric carbon dioxide concentration</term>
<term>Average leaf ratio</term>
<term>Behaviour</term>
<term>Berry bjorkman</term>
<term>Better understanding</term>
<term>Bjorkman</term>
<term>Blackwell science</term>
<term>Carbohydrate</term>
<term>Carboxylation</term>
<term>Crop science</term>
<term>Current modelling paradigm</term>
<term>Current paradigm</term>
<term>Dynamic response</term>
<term>Ehleringer bjorkman</term>
<term>Experimental biology</term>
<term>Forest ecology</term>
<term>Forest growth experiment</term>
<term>Fractional turnover rates</term>
<term>Frossard friaud</term>
<term>Frost hardiness</term>
<term>General conditions</term>
<term>Gifford</term>
<term>Global</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Global change research</term>
<term>Global warming</term>
<term>Gross leaf photosynthesis</term>
<term>Growth temperature</term>
<term>Incident radiation data</term>
<term>Individual temperature responses</term>
<term>Internal allocation</term>
<term>Kcarb</term>
<term>Labile</term>
<term>Leaf</term>
<term>Leaf model</term>
<term>Leaf photosynthesis</term>
<term>Leaf protein synthesis</term>
<term>Leaf respiration</term>
<term>Leaf temperature</term>
<term>Mccree troughton</term>
<term>Metabolic turnover rates</term>
<term>Modelling</term>
<term>Modelling paradigm</term>
<term>Modelling respiration</term>
<term>Optimal temperature</term>
<term>Parameter values</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic response</term>
<term>Physiologia plantarum</term>
<term>Physiology</term>
<term>Plant acclimation</term>
<term>Plant growth</term>
<term>Plant physiology</term>
<term>Plant respiration</term>
<term>Positive temperature response</term>
<term>Present model</term>
<term>Protein synthesis</term>
<term>Respiration</term>
<term>Steady state</term>
<term>Strict constancy</term>
<term>Substrate approach</term>
<term>Temperature adaptation</term>
<term>Temperature dependences</term>
<term>Temperature effects</term>
<term>Temperature response</term>
<term>Temperature responses</term>
<term>Thornley</term>
<term>Thornley johnson</term>
<term>Topt</term>
<term>Transient dynamics</term>
<term>Turnover</term>
<term>Turnover rates</term>
<term>Warren wilson</term>
<term>White clover</term>
<term>Woodwell</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acclimation</term>
<term>Alternative modelling paradigm</term>
<term>Atmospheric carbon dioxide concentration</term>
<term>Average leaf ratio</term>
<term>Behaviour</term>
<term>Berry bjorkman</term>
<term>Better understanding</term>
<term>Bjorkman</term>
<term>Blackwell science</term>
<term>Carbohydrate</term>
<term>Carboxylation</term>
<term>Crop science</term>
<term>Current modelling paradigm</term>
<term>Current paradigm</term>
<term>Dynamic response</term>
<term>Ehleringer bjorkman</term>
<term>Experimental biology</term>
<term>Forest ecology</term>
<term>Forest growth experiment</term>
<term>Fractional turnover rates</term>
<term>Frossard friaud</term>
<term>Frost hardiness</term>
<term>General conditions</term>
<term>Gifford</term>
<term>Global</term>
<term>Global change</term>
<term>Global change biology</term>
<term>Global change research</term>
<term>Global warming</term>
<term>Gross leaf photosynthesis</term>
<term>Growth temperature</term>
<term>Incident radiation data</term>
<term>Individual temperature responses</term>
<term>Internal allocation</term>
<term>Kcarb</term>
<term>Labile</term>
<term>Leaf</term>
<term>Leaf model</term>
<term>Leaf photosynthesis</term>
<term>Leaf protein synthesis</term>
<term>Leaf respiration</term>
<term>Leaf temperature</term>
<term>Mccree troughton</term>
<term>Metabolic turnover rates</term>
<term>Modelling</term>
<term>Modelling paradigm</term>
<term>Modelling respiration</term>
<term>Optimal temperature</term>
<term>Parameter values</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic response</term>
<term>Physiologia plantarum</term>
<term>Physiology</term>
<term>Plant acclimation</term>
<term>Plant growth</term>
<term>Plant physiology</term>
<term>Plant respiration</term>
<term>Positive temperature response</term>
<term>Present model</term>
<term>Protein synthesis</term>
<term>Respiration</term>
<term>Steady state</term>
<term>Strict constancy</term>
<term>Substrate approach</term>
<term>Temperature adaptation</term>
<term>Temperature dependences</term>
<term>Temperature effects</term>
<term>Temperature response</term>
<term>Temperature responses</term>
<term>Thornley</term>
<term>Thornley johnson</term>
<term>Topt</term>
<term>Transient dynamics</term>
<term>Turnover</term>
<term>Turnover rates</term>
<term>Warren wilson</term>
<term>White clover</term>
<term>Woodwell</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Réchauffement climatique</term>
<term>Chiffre d'affaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Based on short‐term experiments, many plant growth models – including those used in global change research – assume that an increase in temperature stimulates plant respiration (R) more than photosynthesis (P), leading to an increase in the R/P ratio. Longer‐term experiments, however, have demonstrated that R/P is relatively insensitive to growth temperature. We show that both types of temperature response may be reconciled within a simple substrate‐based model of plant acclimation to temperature, in which respiration is effectively limited by the supply of carbohydrates fixed through photosynthesis. The short‐term, positive temperature response of R/P reflects the transient dynamics of the nonstructural carbohydrate and protein pools; the insensitivity of R/P to temperature on longer time‐scales reflects the steady‐state behaviour of these pools. Thus the substrate approach may provide a basis for predicting plant respiration responses to temperature that is more robust than the current modelling paradigm based on the extrapolation of results from short‐term experiments. The present model predicts that the acclimated R/P depends mainly on the internal allocation of carbohydrates to protein synthesis, a better understanding of which is therefore required to underpin the wider use of a constant R/P as an alternative modelling paradigm in global change research.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Édimbourg</li>
</settlement>
<orgName>
<li>Université d'Édimbourg</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dewar, Roderick C" sort="Dewar, Roderick C" uniqKey="Dewar R" first="Roderick C." last="Dewar">Roderick C. Dewar</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Medlyn, Belinda E" sort="Medlyn, Belinda E" uniqKey="Medlyn B" first="Belinda E." last="Medlyn">Belinda E. Medlyn</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Mcmurtrie, Ross E" sort="Mcmurtrie, Ross E" uniqKey="Mcmurtrie R" first="Ross. E." last="Mcmurtrie">Ross. E. Mcmurtrie</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C544 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00C544 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A6BE32A8DE84F912FE7F77BD23989A68006BD8EE
   |texte=   Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024